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Abstract

The development of an efficient method for high-throughput analysis of multiple electropherograms or chromatograms collected in series
is presented. The method, encoded in a computer program designated “Cutter”, utilizes batch processing for determining chromatographic
figures of merit (CFOM) including peak centroid times, heights, areas, signal-to-noise ratios (S/N), variance (σ2), skew, excess, and plate
number (N) across a set of separations collected serially. The software was validated using simulated data with varying S/N, skew, and excess.
The accuracy of the analysis was comparable to or improved over commercial software with area calculation relative errors (RE) below 5% for
simulated data with S/N= 5. File sets containing 1300 electropherograms were analyzed in 5 min, representing a nearly 200-fold reduction in
analysis time from other methods. Incorporated within the program is a novel method for automated peak deconvolution using an Empirically
Transformed Gaussian function. Area measurements of deconvoluted peaks were within 3% of the true value of a simulated data set with
S/N = 5 and resolution(Rs) = 1 for equivalent peaks, and within 10% when the ratio of the overlapped peak heights was 10:1.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Breakthroughs in sample injection and high-sensitivity
detection have enabled significant improvements in the
speed of capillary electrophoresis (CE) separations (for re-
view see reference[1]). High-resolution separations with
over 300,000 theoretical plates have been achieved in less
than 10 s[2,3]. Sub-second separations have been reported
with some degradation of resolution[3–5]. Chromato-
graphic separation speeds have also increased dramatically
with the advent of small particles in liquid chromatography
(LC; for review see reference[6]) and advanced injection
methods coupled with open tubular columns in gas chro-
matography (GC)[7]. These high-speed separations may
facilitate many new applications, such as high-throughput
screening, bed-side clinical assays, and chemical monitor-
ing. In chemical monitoring a rapid separation is coupled
on-line to sampling and derivatization chemistry (if nec-
essary) so that changes in the concentration of analyte(s)
can be tracked over time by serial separations. Applications
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include monitoring industrial processes[8,9], chemical
reactions[10,11], separations (i.e. two-dimensional sep-
arations) [12,13], neurotransmitters in vivo[14,15], and
hormone secretion from cells[16]. With the improved in-
strumentation for fast separations, it is necessary to develop
methods that can efficiently analyze high-speed separations
data.

Chemical monitoring by separations can generate large
data sets with special requirements for analysis. For exam-
ple, monitoring a process for 8 h by electrophoresis at 10 s
temporal resolution would generate nearly 3000 electro-
pherograms. These electropherograms may contain several
peaks of interest for quantification that change over wide
concentration ranges. For method development, ensuring
good data quality, or diagnosis of problems it would also
be of interest to determine chromatographic figures of
merit (CFOM) on the resulting peaks. Furthermore, with
a high-speed separation compromises in the separation
quality may result in overlapping peaks that require decon-
volution to produce accurate peak characterization. Useful
data reporting would include quantitatively plotting analyte
concentration as a function of time and tabulating peak
parameters such as peak centroid location, skew, efficiency,
signal-to-noise ratio (S/N), and plate number (N).
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Conventional data analysis software is not well-suited
for meeting the analysis requirements of large sets of elec-
tropherograms (or chromatograms). Most programs employ
serial analysis wherein the user loads one file containing
a single electropherogram, analyzes it, obtains a result,
and repeats for all files obtained from a given experiment.
Although programs may allow for scripting of common
actions, this is still a serial mode of data analysis and the
scripts can be limited in utility. This methodology is rela-
tively slow, often requiring a few minutes to analyze a file,
meaning that data analysis can become the rate limiting
step in the case of high-throughput separations that are
collected in a few seconds. The one-at-a-time method also
fails to produce comprehensive reports across a data set
requiring many single reports to be combined to perform
useful file-to-file correlations. Another frequent limitation
of commercial software is difficulty in tracking peaks that
change from undetectable (i.e. “blanks”) to detectable dur-
ing the course of analysis. For example, when monitoring a
reaction, the initial electropherograms may not have a peak
corresponding to the product; however, the product signal,
known to occur at a given migration time, will increase as
the reaction proceeds. Many programs do not provide the
option of defining a value at the point where the product
will appear, thus giving no zero point.

A few programs with multi-chromatogram analysis capa-
bility have been reported such as CHAS (a FORTRAN pro-
gram), which loaded a set of chromatograms into a master
library from which single files were extracted for analysis
[17]. More recently, MICHROM has been developed for
the analysis and optimization of chromatographic data[18].
Although the program can load up to 50 chromatograms,
the analysis time or mode of operation (serial or parallel)
was not reported. Some exceptions to serial methodology
are commercially available such as the GRAMS (Thermo
Galactic, Salem, NH) software package for spectroscopy
data processing. Although a chromatography add-on module
is available, it is intended mainly for the construction of cal-
ibration curves and presentation of data instead of extracting
CFOM.

In this work, we describe a new method for efficient anal-
ysis of large batches of separation data using a LabVIEW-
based program. The program, “Cutter”, utilizes a bulk flow
paradigm for data analysis and generates comprehensive
reports including relevant CFOM across a given data set.
Additionally, it incorporates a novel automated means of
peak deconvolution based upon a form of the Empirically
Transformed Gaussian function[19–21].

2. Experimental

2.1. Cutter program construction

The data analysis program Cutter was written in
LabVIEW 6.1 and follows a modular design (National
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Fig. 1. Flow chart outline of the operation of the Cutter high-throughput
analysis program.

Instruments, Austin, TX). A general outline of its opera-
tion is given in Fig. 1. After all data is loaded it may be
treated by optional data manipulations (e.g., smoothing or
baseline subtraction) before peaks are located and CFOM
calculated. The end product is a plot of CFOM for all peaks
from all files, with the ability to perform statistical analyses
upon these results. The program was run on a 400 MHz PC
computer unless otherwise noted. Cutter is available as a
free download at: http://www.umich.edu/∼rtkgroup.

2.1.1. Building the data set
In the program, a batch of files are loaded as a 3-dimen-

sional array, with the first two dimensions being the abscissa
and ordinate data of each file (i.e. time and intensity) and
the third being each file loaded. In some instances, tempo-
ral normalization of the data files was used. In this case,
the program aligned individual electropherograms about a
common peak. File starting points were then equalized, and
points equivalent to the minima of the data were added
to the file ends to match the longest file loaded, yielding
equivalent file sizes. With this manipulation, migration time
deviation statistics of the common peak were lost, how-
ever, it was useful for simplifying peak marking in some
cases.

2.1.2. Baseline subtraction and filtering
Baseline subtraction was accomplished either by fitting

an n-order polynomial to the entire data set and then sub-
tracting the value of this polynomial from the signal at each
time point or by fitting x-number of n-order polynomials to
consecutive blocks of data (i.e. portions of the electrophero-
grams) before subtraction, which allowed for extrication
of the baseline from peak components of the data. For this
manipulation, the subtracted data ordinate values could

http://www.umich.edu/~rtkgroup
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either optionally be centered about the average of the noise
or be constrained to only positive values by determining
the minimum value of the ordinate data and setting it to
zero. Solving of n-order polynomials was typically accom-
plished using a singular value decomposition (SVD) [22],
though other algorithms could be utilized (e.g., Givens or
Householder [22]). Generally, for CE data, a zero order
line was needed, although higher orders could be used. For
data exhibiting a baseline not easily fit by a polynomial
(e.g. a highly irregular baseline or one containing a matrix
interferent), a selected data file could be used as a “blank”
for subtraction from all files. In order to subtract baselines
from individual peaks, versus the entire electropherogram or
chromatogram, a simple line was fitted to the start and end
points of the peaks. Although several methods were avail-
able in Cutter for data smoothing, all work discussed herein
was performed in the absence of filtering of the raw data.

2.1.3. Peak marking and quantitative analysis
Several methods of peak marking (i.e. defining the begin-

ning and end of peaks within the data) were incorporated
into Cutter for testing. In manual mode, the user located
a desired peak between two cursors in an overlaid plot of
all the electropherograms or chromatograms. This process
could be repeated for all peaks of interest. Successful use of
this mode was aided by temporal normalization because it
required that the migration time reproducibility be sufficient
to avoid substantial marking errors. In automated modes,
peaks were detected using a first derivative algorithm [23].
In this method, first derivatives, which could be filtered us-
ing a Bessel algorithm, were calculated for all files. Peaks
were located by determining the time at which the derivative
signal crossed a threshold. The threshold was defined by the
user as a multiple, typically 10 or greater, of the standard
deviation of the derivative in a baseline region. For a peak
to be marked, the derivative was required to pass though a
positive threshold twice and a negative threshold twice. A
minimum peak width, typically at least nine points, was de-
fined to exclude noise spikes. The algorithm also allowed
for cross correlation of peaks found across all files, meaning
that a peak found within a given region of one file could be
marked in all files, which was useful for marking “blank”
peaks or in cases of low S/N. Finally, peaks could be de-
termined for all files by using a single file as a model with
either manual or automatic peak marking [24]. For example,
a standard test mixture containing only analytes of interest
could be used to target peaks for marking from more com-
plicated (e.g. in vivo) experiments.

Once the peak locations were determined, the program
calculated the following figures of merit: centroid time,
height, area, S/N [25], variance (σ2), skew, excess [26], and
N based both on direct calculation of σ2 and by the width at
half height [27]. Heights and areas were calculated both as
a simple maxima and integration, respectively, or by fitting
and subtracting a linear polynomial from the start and end
points of the individual peaks prior to calculation.

2.1.4. Deconvolution of overlapped peaks
Overlapped peaks were resolved using the following form

of the empirically transformed Gaussian (ETG) equation
[19]:

h(t) = H ′′

{1 + λl exp[kl(tl − t)]}α
+{1 + λt exp[kt(t − tt)]}β − 1

(1)

where λl and α are leading edge parameters, λt and β are
trailing edge parameters, k are σ−1 for a symmetrical peak,
and tl and tt are roughly the half width times of the leading
and trailing edges, respectively. H′′ is given by:

H ′′ = 2H exp(0.5) (2)

where H is the peak maxima.
The ETG function was chosen because it has been thor-

oughly characterized [19,20] and shown to be a highly accu-
rate model for a wide variety of peak shapes. Furthermore,
ETG converges rapidly and can be solved with limited a pri-
ori knowledge of the peak. (It is recognized however that
more robust equations have been developed for extreme peak
asymmetries [21,28].) Using initial values found during the
peak marking routine for H′′, tl, tt, kl, kt, and a unity value
for the remaining parameters (λl, λt, α, and β), the equation
was solved using the Levenberg–Marquardt method [29]. H′′
was considered to be a true value based on peak maxima and
the other eight parameters (t, k, λ, α, β) were solved. For the
deconvolution of n-peaks, Eq. (1) was summed across the
number of peaks (e.g., a three peak system would have 24
parameters determined). The speed, accuracy, and precision
of convergence were enhanced by first sampling only 25%
of a data set (e.g. for 100 points, only every fourth point
was used) and solving for the parameters. These solved pa-
rameters were then used as initial guesses for a 50% sam-
pling, followed by 75% sampling, and finally the results of
the 75% were used as initial guesses for the full data set.
Each sampling could be by-passed, as was necessary when
peaks were undersampled (e.g. a peak with less than 10 data
points); alternatively, in the case of large data sets, the 100%
sampling itself could be bypassed.

2.2. Data sets analyzed

2.2.1. Simulated data
In order to validate Cutter, a set of data with known char-

acteristics was constructed as recommended previously [30].
Using a simplified form of Eq. (1):

h(t) = H ′′

1 + exp[kl(t − tl)] + exp[kt(t − tt)]
(3)

H′′, kl, kt, tl, and tt were manually manipulated until
Gaussian-based peaks with various skew (−0.3, 0, and 0.3)
and excess (−0.3, 0, and 0.3) were obtained. The signal
generated by Eq. (3) was considered “noiseless” . To simu-
late white noise, LabVIEW was used to generate random
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numbers with a Gaussian distribution with an average value
of 0 and a standard deviation of 1, which were multiplied
by an empirically determined constant to create the desired
S/N ratio (S/N = 5, 10, 100, and 1000), and added as a
series to the noiseless data sets. These operations yielded a
total data set of 45 peaks with 1000 points per file.

Height and area calculations were performed for all sim-
ulated data within Cutter and Origin 6.0 (Microcal Software
Inc., Northampton, MA). Percent relative errors (RE) of the
data were calculated using the deviation of the area from the
noiseless signal. For deconvolution testing, simulated equiv-
alent peaks with zero skew and excess were added together
with a temporal offset to create a set of overlapped peaks
with various Rs (0.50, 0.75, 1.00, 1.50, and 2.00). A second
set maintaining Rs = 1.00 at varying S/N was constructed
while varying the ratio of the two peak sizes from 1.3 to
20. A third set was created at varying S/N while maintain-
ing Rs = 1, the first peak with zero skew and excess, and
the second peak with variable (−0.3, 0.0, or 0.3) skew and
excess.

2.2.2. Microfluidic electrophoresis data
Data from a microfluidic device performing CE im-

munoassays (CE-IA) for insulin were obtained as discussed
before [16]. Briefly, 0–1500 nM insulin, 150 nM fluorescein
isothiocyanate-labeled insulin (FITC-insulin), and 75 nM
monoclonal antibody to insulin were mixed on-line within
a fluidic network microfabricated in glass. The sample and
immunoreagents were electroosmotically driven along a
heated channel where they were allowed to react. The re-
action stream was then sampled via a flow-gated injection
interface every 10 s and separated by CE within 5 s using an
electric field of 500 V/cm. Laser-induced fluorescence (LIF)
detection was performed via an epi-fluorescent microscope
using the 488 nm line of a 20 mW Ar+ laser and photon
counting photomultiplier tube (PMT) sampling at 100 Hz.
Instrument control and data collection was via a computer
and LabVIEW controlled data acquisition board.

2.2.3. In vivo capillary electrophoresis data
Amino acids were measured in vivo by microdialysis

coupled on-line to CE-LIF as described elsewhere [2].
Briefly, microdialysis probes were implanted into the stria-
tum of ovariectomized female Sprague–Dawley rats. After
recovery from surgery, the animals were placed in a cage
fitted with a swivel system and the dialysis probe was
connected to a perfusion pump and the CE-LIF system.
Probes were perfused at 1 �l/min. Dialysate was derivatized
on-line with a solution composed of 10 mM o-phthaldehyde
(OPA), 40 mM �-mercaptoethanol (BME), 36 mM bo-
rate, 0.81 mM hydroxypropyl-�-cyclodextrin (HPBCD),
and 10% methanol (v/v) at pH 9.5. 200 ms electrokinetic
injections of derivatized dialysate were controlled by a
flow-gated interface. Capillary electrophoresis was carried
out in a 9 cm long, 10 �m inner diameter, 150 �m outer
diameter fused-silica capillary with an electric field of

2.2 kV/cm. Fluorescence was induced with the 351 nm laser
line from an Ar+ laser and detected off-column using a
sheath-flow cuvette [31] via a PMT and current-amplifier.
Instrument control and data collection was via a computer
and LabVIEW controlled data acquisition board. After sta-
ble electropherograms were recorded, an artificial cerebral
spinal fluid solution containing 75 mM K+ was perfused
through the probe for 10 min to evoke stimulation of neu-
rotransmitter release.

3. Results and discussion

3.1. Validation

Initial experiments were aimed at validating the peak
marking capabilities and peak parameter calculations of the
new program as previously recommended [30]. The heights
and areas of Gaussian-based peaks with skew and excess
varied from −0.3 to 0.3 and S/N varied from 5 to noise-
less (Fig. 2a) were calculated using Cutter and compared
to a commercial program (Origin) using automated peak

Fig. 2. Simulated data sets used to validate Cutter. (a) Peaks (grey dots)
are Gaussian-based with various degrees of skew (S) and excess (E).
The different S/N values were obtained by adding increasing amounts of
white noise to the noiseless signal. Results of fitting an ETG function to
the simulated data are shown as black lines. (b) Average %RE of height
and area calculations across all peaks vs. S/N. Results compare the error
obtained using Origin, Cutter with simple numeric integration, and Cutter
with fitting of ETG function to the peaks.
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Fig. 3. Deconvolution via ETG of two equivalent Gaussian peaks as Rs

and S/N are varied. (a) Deconvolution of data (grey dots) via ETG fit at
S/N = 1000 (top) and S/N = 10 (bottom). Individual peaks are shown as
dashed lines and their sum resulted in the calculated signal (heavy lines).
(b) Average %RE of height and area calculations across all peaks vs. S/N.
(c) Average %RE of height and area calculations across all S/N vs. Rs.

Fig. 4. Deconvolution via ETG of two Gaussian peaks as the ratio of heights and S/N are varied. (a) Deconvolution of data (grey dots) via ETG fit
at S/N = 1000 (top) and S/N = 10 (bottom). Individual peaks are shown as dashed lines and their sum resulted in the calculated signal (black lines).
Height (b) and area (c) %RE of the smaller peak plotted as height ratio vs. S/N.

detection. Using height and area values obtained from the
noiseless signal as true values, the average RE across the
various skews and excesses obtained by both Origin and
Cutter for height calculations were 43.4, 24.1, 1.5, and 0.1%
at S/N = 5, 10, 100, and 1000, respectively. Peak area RE
for Origin were 11.0, 5.5, 0.4, and 0.0% at S/N = 5, 10,
100, and 1000, respectively; while Cutter obtained RE of
4.5, 2.4, 0.2, and 0.0% (Fig. 2b). The errors in height tend
to be greater than those in area because the error is affected
by imprecision in both baseline and height determinations,
whereas the area calculations are effectively “smoothed” .
The error was influenced more by the S/N than the extent of
deviation from a true Gaussian in accordance with previous
studies [32]. For example, with skew and excess equal to
zero, the area RE given by Cutter for S/N = 5, 10, 100, and
1000 were 5.0, 1.1, 0.1, and 0.0%, respectively, while with
skew and excess equal to 0.3 the area RE were 4.5, 0.3, 0.1,
and 0.0%. Based upon these results, it was concluded that
the peak marking method and peak parameter calculations
of Cutter were valid for a variety of asymmetries and S/N.
Further studies would be required to determine the limits
under more extreme conditions, such as extreme baseline
drift, skew, or non-Gaussian noise.

3.2. Deconvolution

We next investigated the use of the ETG function to de-
convolute peaks. Deconvolution was expected to improve:
(1) reproducibility for peak parameter calculation at low S/N
by effectively smoothing the data [23], and (2) improve ac-
curacy and reproducibility of peak analysis for overlapping
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zones. While the ETG function has been successfully ap-
plied to fitting of both simulated and real data for single
resolved peaks [19–21], it has not been applied to deconvo-
lution of overlapped peaks.

In this work, the form of ETG used collapses exponent
factors of the original form into single variables, as was nec-
essary for faster convergence and to avoid computer buffer
under- and overflows resulting in a failed fit. Initial val-
ues of the parameters were automatically determined based
upon peak shape without user intervention. The algorithm
was first tested by fitting Eq. (1) to simulated single peaks
of varying asymmetries and noise levels shown in Fig. 2a.
The height calculation RE at S/N = 5, 10, 100, and 1000 af-
ter fitting of the ETG to the symmetrical Gaussian was 4.3,
2.83, 2.14, and 0.12%, respectively, while area RE was 0.8,
0.1, 0.3, and 0.3%. The average RE across all the different
asymmetries for height calculations after fitting of the ETG
at S/N = 5, 10, 100, and 1000 were 5.2, 3.0, 1.5 and 0.1%,
respectively, and 1.2, 1.1, 0.3, and 0.3% for area measure-
ments (Fig. 2b). These results are a vast improvement over
results without deconvolution (see comparisons in Fig. 2b)
and confirm the utility of the ETG function for peak fitting
[19,20].

The program was then tested with simulated data contain-
ing two equivalent overlapped Gaussian peaks as the reso-
lution was varied from 0.5 to 2.0 at different levels of S/N.
Example results at S/N of 10 and 1000, solved via summa-
tion of Eq. (1) over the 2 peaks, are given in Fig. 3a. RE was

Fig. 5. Deconvolution via ETG of Gaussian (G) and modified Gaussian
(M) peaks as skew (S), excess (E), and S/N are varied. (a) Deconvolution
of data (grey dots) via ETG fit at S/N = 1000. Individual peaks are
shown as dashed lines and their sum resulted in the calculated signal
(black lines). (b) Average %RE of height and area calculations across all
peaks vs. S/N. %RE are reported for the G and M peaks at each set of
peak parameters. (c) Average %RE of height and area calculations across
all S/N vs. skew and excess parameters. −0.3, 0.0, and 0.3 have been
abbreviated as (−), (0), and (+), respectively.

calculated based upon either the height or area of a single
Gaussian without noise versus the individual deconvoluted
measurements. As expected, lower S/N gave the largest mar-
gin of error, although even at Rs = 0.5 with S/N = 5 the
average RE of the two peaks was only 3.0 and 2.4% for
heights and areas, respectively. The degree of overlap ap-
peared to have a slightly greater contribution to the error
than the S/N (Fig. 3b and c).

The effectiveness of deconvolution can be altered when
one of the overlapping peaks has a much greater magnitude
than the other. To test the effect of varying peak size ratio, a
simulated pair of Gaussian peaks with a constant Rs = 1 and
peak height ratios of 20, 10, 5.0, 2.0, and 1.3 at different S/N
were examined (Fig. 4a). RE as a function of peak height
ratio and S/N are shown in the contour plots of Fig. 4 for both
peak height (Fig. 4b) and peak area measurements (Fig. 4c)
of the smaller peak, which illustrate the range of conditions
wherein a given error will be obtained. The smaller peak was
more dramatically affected than the larger peak, especially as
the S/N decreased and the peak ratio increased. Nevertheless,
even with a peak ratio of 20 and S/N of 10 the height RE
for the smaller peak was 8.0%.

Peak deconvolution was also tested with data sets at
varying S/N where skew and excess of one peak was held
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constant at zero while the second peak had variable (−0.3,
0.0, and 0.3) skew and excess and Rs was held constant at
1 (Fig. 5a). Average RE for both peaks were under 10%
at all S/N, whether for area or height calculations. Error
appeared to be most heavily influenced by S/N instead
of the degree of deviation from Gaussian (Fig. 5b and c)
in accordance with previous studies [32]; although, those
peaks with an excess of −0.3 tended to exhibit slightly
higher RE than those with no excess or positive excess
components.

3.3. CE immunoassay analysis

After initial characterization of the method on simulated
data, tests were performed on real data sets. To test the abil-
ity of the method to analyze large files, batches of CE-based
immunoassay data were analyzed. A set of 720 immunoas-
say electropherograms, collected every 10 s using a 100 Hz
sampling rate on a microchip CE system [16], are shown in
Fig. 6a. The two most intense peaks correspond to free flu-
orescent tracer (F) and fluorescent tracer bound to antibody
(B). Analysis of the total data set, which included marking
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Fig. 7. Automatic peak marking for CE data monitoring in vivo neurotransmitters. (a) Peaks automatically detected in an in vivo electropherogram
during a K+ stimulation (full scale). Peaks were identified as: (1) Glu; (2) Asp; (3) neutral species; (4) GABA; (5) Tau; (6) Gln; (7) Ser; and (8) Gly.
Unidentified peaks are denoted as U. Peak starts are marked by solid lines and peak ends by dashed lines. (b) Magnified scale of the same data to
emphasize low level peak detection.

each peak and determining CFOM, was completed with au-
tomated peak marking by Cutter in <5 min. A portion of
the data report, a plot of peak height for the B and F peaks
as well as for the peak ratio is illustrated in Fig. 6b. Serial
analysis of this data set, even with automatic peak marking,
required ∼12 h.

At the beginning of the data set the peak heights had not
stabilized because the fluidic device was not filled with sam-
ple thus causing the initial fluctuation in peak height. These
data illustrate the utility of marking peaks in “blank” elec-
tropherograms, accomplished with automatic peak marking
and file-to-file peak correlation, as a means of providing zero
readings at the appropriate points. Without this function, the
peaks would not be marked and tracking of a single peak
corresponding to bound or free would be difficult.

As a test of the program for larger data sets, the data set
was duplicated five times to generate a total of 3600 electro-
pherograms. This data set mimics the data load produced for
a series of injections made every 10 s for 10 h. Analysis was
completed in ∼20 min on a 400 MHz computer; however,
analyzing the same set using a 2.4 GHz computer decreased
the analysis time to <5 min.
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Fig. 8. Effect of temporal normalization upon migration time precision.
(a) Overlaid plots of 20 basal in vivo electropherograms. The lower traces
are the original data and the upper have been temporally normalized about
the highest peak (Gln). (b) Actual migration times for the four major
peaks prior to normalization. (c) Reduction in % R.S.D. of the migration
times resulting from temporal normalization. % R.S.D. was calculated
excluding the peak normalized against.
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Fig. 9. Peak heights of seven amino acids collected from four rats during the course of K+ stimulations (marked as horizontal lines). The total data set
included 1300 electropherograms.

3.4. CE in vivo neurotransmitter analysis

Immunoassays typically present relatively simple elec-
tropherograms with just two peaks of interest that are
well-resolved. To test the efficacy of Cutter with more
complex data sets, the program was used to analyze elec-
tropherograms collected while monitoring neurotransmitter
levels of live rats when neuronal secretion was stimulated
by passing 75 mM K+ through the dialysis probe. The sep-
aration was optimized for seven amines: glutamate (Glu),
aspartate (Asp), �-aminobutyric acid (GABA), glutamine
(Gln), taurine (Tau), glycine (Gly), and serine (Ser) [2]. A
representative electropherogram collected in vivo is illus-
trated in Fig. 7 with the locations of automatically marked
peaks. (Peaks were identified from previous experiments
based on migration times and spiking of samples.) In col-
lection of this data electropherograms were overlapped, i.e.
9 s after one injection a second injection was made. As a
result, late migrating peaks for Glu and Asp appear at the
beginning of the following electropherograms as shown
in Fig. 7. Overlapping injections, possible when slower
migrating compounds will not co-elute with faster com-
pounds in the following electropherogram as in this case,
allow the temporal resolution of the monitoring experiment
to be improved. Overlapping injections can cause minor
complications for peak analysis as discussed below.

The effect of temporal normalization on migration time
deviations was examined. Using 20 basal electropherograms
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collected in vivo, the reproducibility of peak migration times
prior to normalization was compared to that after normal-
izing to various peaks (Fig. 8). Non-normalized migration
times shown in Fig. 8b displayed no apparent pattern to the
deviations from file-to-file; however, peak shifts were cor-
related within a file. Although the migration time standard
deviations of Tau, Gln, Ser, and Gly were low (∼40 ms)
for the non-normalized data, the average relative standard
deviations (R.S.D.) were improved approximately 10-fold
with normalization (Fig. 8c). The improvement was inde-
pendent of the peak used for normalization suggesting that
a systemic error in the instrument, such as irreproducible
file acquisition start times or the inherent mechanical devia-
tion of the solenoid-controlled injection system, rather than
variation in actual electrophoretic velocity is the dominant
source of variability in migration time. Temporal normal-
ization corrects for this error and enables simplified manual
peak marking. For example, with the high degree of repro-
ducibility shown in the normalized plot of Fig. 8a, it is pos-
sible to set fixed times as the start and end of each peak
instead of marking peaks each electropherogram individu-
ally. As analyte migration times are further removed from
the peak chosen for normalization, the errors in migration
time are expected to be larger. In such a case, successive
normalizations are required.

To test the analysis time for more complex data, a set of
1300 electropherograms (containing ∼1.2×106 data points),
acquired during the course of four in vivo experiments were
analyzed by Cutter. Peak heights for the seven identified
amines as a function of time during the K+ treatment are
presented in Fig. 9. Peak marking was accomplished by first
examining the Glu and Asp peak region separately from the
rest of the data set. Electropherograms were first normalized
to Glu, which was automatically marked. The low S/N for
Asp at some points required that its boundaries be manu-
ally set, showing a limitation of the first derivative method
of peak marking. (Manual set points were used across the
entire data set.) The region of electropherograms containing
the other peaks was then excised and the data was temporally
normalized against Gln. The remaining peaks (Tau, Gln, Ser,
and Gly) were automatically marked, except GABA, which
was manually added due to its low S/N at basal levels. (The
separate analysis for the acidic amino acids versus the others
was necessary because of the use of overlapping injections
(see above). In particular, temporal normalization was not
effective since the Glu and Asp peaks in a given file were
actually injected with the prior electropherograms.) CFOMs
were calculated for this set within 5 min on a 2.4 GHz com-
puter. The results were equivalent to those obtained with
serial file analysis that required ∼20 h to complete.

3.5. Deconvolution of real data sets

To investigate the utility of deconvolution for increasing
the accuracy of measurements on real data sets, standard
electropherograms of Ser and Gly were analyzed (Fig. 10).
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Fig. 10. Effect of deconvolution upon Ser and Gly concentration measure-
ment accuracy. (a) Full scale plot of deconvolution of raw data (heavy
grey line) via ETG fit at a Gly/Ser ratio of 100. The individual peaks,
corresponding to Ser, Gly, and an unknown contaminant, are shown as
thin grey lines and their sum resulted in the calculated signal (black line).
(b) Magnified scale plot to emphasize the lower S/N peaks. (c) Plot de-
picting Gly/Ser ratios calculated from simple area integration (�), area
after deconvolution (�), and the actual concentrations (�) vs. the actual
Gly concentration.

For these experiments, Ser was held constant at 5 �M while
Gly was varied from 10 to 500 �M. As Gly concentration is
increased, the overlap of the peaks increases so that eventu-
ally the peaks are highly overlapped. Fig. 10a and b illustrate
the appearance of the peaks at a 100:1 ratio of Gly to Ser that
result in extensive overlap. Examination of Fig. 10b illus-
trates that a third, unknown peak also overlaps the Gly/Ser
zones. Overlaid on these electropherograms are the decon-
voluted peak shapes. As the ratio of Gly is increased, simple
numeric integration of the peak areas resulted in ratios of
Gly/Ser that were falsely high as illustrated in Fig. 10c. This
effect was attributed to generating lower than true values
for Ser and higher than true values for Gly. Deconvolution
of the three peaks allowed for more accurate calculations of
the areas, resulting in Gly/Ser ratios closer to that predicted
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from actual concentrations (Fig. 10c). These results illus-
trate that the use of ETG deconvolution can improve the ac-
curacy of peak characterization for moderately overlapped
peaks.

4. Conclusion

Advances in data analysis methods are required to keep
pace with the large data output and new applications of
rapid separation techniques. Although many powerful ap-
plications are available for single file analyses, they are
inefficient in terms of bulk data processing that might be
produced from diverse applications of serial data analysis.
The approach used here, encoded in Cutter, allows for the
rapid analysis of large volumes of data to better match
the time scale of the actual acquisition. The method is es-
pecially well-suited for long-term monitoring experiments
wherein multiple compounds are continuously quantified
over long periods. The new program has also successfully
demonstrated the applicability of ETG to automated de-
convolution of overlapped peaks. The use of deconvolution
will be especially useful in chemical monitoring applica-
tions where the separation is well-characterized, that is the
detected compounds are known yet overlap occurs. Further
studies of the algorithms would be required to confidently
apply them to cases where the electropherograms exhibit
other anomalies such as severely distorted peaks or base-
line spiking and drift; however, it is anticipated that the
programs described here are most likely to be applied in
high-throughput applications that typically have highly re-
liable separations conditions. Future work will also explore
alternative peak detection algorithms that are better suited
to more accurately characterize low S/N peaks and large
dynamic ranges of peaks, such as second derivative methods
[23], histogram methods [33], or Fourier analyses [34].
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